Functions of random variables, Expectation

Putting a value on random variables

Michael Psenka

Review: functions of random variables

Review: Expectation

Definition. The expectation of a numeric random variable $X = (\Omega, \mathbb{P})$ is given by the following:

$$\mathbf{E}[X] \coloneqq \sum_{x \in \Omega} x \mathbb{P}(X = x).$$

Expectation of (functions of) random variables

Linearity of expectation

Theorem. Let X, Y be two (numeric) random variables, and their joint distribution given by $\mathbb{P}(X = x, Y = y)$. The expectation is a "linear operator": that is,

E[X + Y] = E[X] + E[Y],
E[cX] = cE[X] for any fixed c ∈ ℝ.

Some important distributions

Review: Bernoulli

Review: Binomial

Geometric

Expectation equality

Let X be a random variable. If its sample space $\Omega \subset \mathbb{N}$, the following equality holds:

$$\mathbf{E}[X] = \sum_{i=0}^{\infty} \mathbb{P}(X \ge i).$$

Expectation equality

Geometric revisited

Poisson

Poisson

Sum of Poisson

Poisson as limit of binomial